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Natural killer (NK) cells are endowed with germline-encoded receptors that enable them to
detect and kill malignant cells without prior priming. Over the years, overwhelming
evidence has identified an essential role for NK cells in tumor immune surveillance.
More recently, clinical trials have also highlighted their potential in therapeutic settings. Yet,
data show that NK cells can be dysregulated within the tumor microenvironment (TME),
rendering them ineffective in eradicating the cancer cells. This has been attributed to
immune suppressive factors, including the tumor cells per se, stromal cells, regulatory
T cells, and soluble factors such as reactive oxygen species and cytokines. However, the
TME also hosts myeloid cells such as dendritic cells, macrophages, neutrophils, and
myeloid-derived suppressor cells that influence NK cell function. Although the NK-myeloid
cell crosstalk can promote anti-tumor responses, myeloid cells in the TME often
dysregulate NK cells via direct cell-to-cell interactions down-regulating key NK cell
receptors, depletion of nutrients and growth factors required for NK cell growth, and
secretion of metabolites, chemokines and cytokines that ultimately alter NK cell trafficking,
survival, and cytotoxicity. Here, we review the complex functions of myeloid-derived
cytokines in both supporting and suppressing NK cells in the TME and how NK cell-
derived cytokines can influence myeloid subsets. We discuss challenges related to these
interactions in unleashing the full potential of endogenous and adoptively infused NK cells.
Finally, we present strategies aiming at improving NK cell-based cancer immunotherapies
via pathways that are involved in the NK-myeloid cell crosstalk in the TME.
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INTRODUCTION

Natural Killer (NK) cells are cytotoxic lymphocytes that innately
recognize their target cells based on signals from an array of
germline-encoded inhibitory and activating cell surface receptors
(1). While inhibition is mainly mediated by HLA class I-binding
receptors such as KIR, LIR-1, and NKG2A, activation is triggered
by the NKG2D, DNAM-1, NKp30, NKp46, and 2B4 receptors,
among others (2). Experimental approaches delineating how NK
cells target tumor cells have in more recent years been
harmonized with studies evidencing their role in tumor
immune surveillance (3) and clinical therapy to treat patients
with cancer (4, 5). However, it has also become increasingly clear
that NK cells are often dysfunctional in cancer patients (6, 7).
This is most prominent in the tumor microenvironment (TME),
although also observed in blood and other tissues in patients with
advanced cancer (6–8). Factors suppressing endogenous or
adoptively infused NK cells in the TME are likely limiting the
full potential of NK cell-based cancer immunotherapies.

NK cells can be disarmed in the TME by both direct and
indirect interactions with the tumor cells (6, 7, 9). However,
several other cell types in the TME, such as stroma cells and
immune cells, acting by direct interactions and via release of
reactive oxygen species, growth factors, and cytokines, can also
induce NK cell dysfunction (9–11). Both the degree and mode of
NK cell suppression in the TME may dynamically vary from
early to later stages of cancer development as well as between
different tumor histotypes. Beyond reducing the anti-tumor
cytotoxicity of NK cells per se, suppression of NK cells in the
TME can also negatively impact their ability to recruit other
immune cells (12–15), which is crucial for initiating and
maintaining proper anti-tumor responses. In this regard, a
pivotal interaction in the TME is the one between NK cells
and myeloid cells, such as dendritic cells (DCs), macrophages,
neutrophils, and myeloid-derived suppressor cells (MDSCs) (16–
19). While NK cells positively promote DC infiltration and
maturation via release of pro-inflammatory cytokines such as
interferon (IFN)-g (20), myeloid-derived cytokines, including
interleukin (IL)-12, IL-15, and IL-18, critically promote NK cell
maturation, proliferation, and anti-tumor functions (21).
However, aggravation of the TME often observed in more
advanced stages of cancer direct myeloid cells towards a
suppressive phenotype that instead can impede NK cell
functions via secretion of cytokines, such as transforming
growth factor (TGF)-b, IL-1b, and IL-10 (22–24). Thus, the
NK-myeloid crosstalk is intricate but critical for proper anti-
tumor properties of NK cells in the TME.

Here we give an overview of the cytokines involved in the
interplay between NK cells and myeloid cells in the general TME.
We discuss how myeloid cells promote NK cell functions and vice
versa, but foremost, how this interaction can hinder NK cell-
mediated tumor rejection. We outline current methods and
possible future approaches to enhance anti-tumor responses by
NK cells via administration or manipulation of cytokines and
cytokine signaling, as well as preventing myeloid cell infiltration
into the TME. This review highlights that a better understanding
Frontiers in Immunology | www.frontiersin.org 2
of the crosstalk between myeloid cells and NK cells is likely critical
to improve the efficacy of NK cell-based cancer immunotherapy.
MYELOID-DERIVED CYTOKINES
PROMOTING NATURAL KILLER CELL
RESPONSES TO CANCER

Several myeloid cells, exemplified by macrophages and DCs, are
characterized by a pro-inflammatory phenotype and release
cytokines such as type-1 IFNs, IL-12, IL-15, IL-18, IL-21
(Table 1A) upon recognition of damage-associated molecular
patterns (DAMPs) on the transformed cells (70, 71). This pro-
inflammatory cytokine milieu, together with key chemokines, aid
in the recruitment of NK cells to the tumor site while promoting
their persistence and anti-tumor effector functions (70, 72).
Several of these cytokines have overlapping functions but also
possess specific functions in the regulation of NK cell responses
in cancer (35, 73–79) (Figure 1 and Table 1A). In this section,
we will present the key cytokines released by myeloid cells that
promote anti-tumor cytotoxicity by NK cells but also give
examples of how cytokines can have dual functions.

Direct and Indirect Contribution of
Interferon-a and Interferon-b in Natural
Killer Cell Activation
The type-1 IFNs, IFN-a, and IFN-b are secreted by activated
myeloid cells and stimulate NK cell expansion while enhancing
the effector functions upon stimulation of the IFN-a receptor
(IFNAR) (80, 81). Inversely, as highlighted in experimental
models using IFNAR-deficient NK cells and NK cells with
defective downstream signaling molecule transducer and
activator-1 (STAT1), impaired type-1 IFN signaling results in
defective functional NK cell maturation and hampered anti-
tumoricidal potential in sarcoma and lymphoma mouse models
(82, 83). Importantly, while transient or intermittent type-1 IFN
stimulation results in preferential phosphorylation of STAT4
than STAT1 and thereby increased IFN-g production by NK cells
promoting pro-inflammation, chronic stimulation coupled with
increased levels of IFN-g also bolster NK cell cytotoxicity (81,
84). This is due to increases basal levels of STAT1 protein
expression following chronic IFN-g stimulation that triggers
preferential activation of STAT1 over STAT4 (81, 84).
Additionally, autocrine type-1 IFN signaling in activated
myeloid cells induces interleukin (IL)-15 production, which is
a critical cytokine for NK cell development, proliferation and
cytotoxic function (37, 85).

Regulation of Natural Killer Cell Activation
and Effector Function by Interleukin-12
Family of Cytokines
The IL-12 family of heterodimeric cytokines, including IL-12, IL-
23, and IL-27, critically regulate NK cell activation and effector
functions (Figure 1A and Table 1A). Phagocytic macrophages
and DCs produce these cytokines following the recognition of
January 2021 | Volume 11 | Article 621225
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DAMPs on dying tumor cells. Despite sharing sequence
similarly, these cytokines uniquely modulate NK cell function.

Interleukin-12
IL-12 (p35 and p40 complex) signals by engaging the heterodimeric
receptor complex of IL-12Rb1 and IL-12Rb2 subunits that are
readily expressed by mature activated but not immature NK cells.
In NK cells, IL-12 signaling principally mediates STAT4
phosphorylation that is essential for both IFN-g and perforin
expression, as observed both in human NK cells in vitro and in
murine NK cells in vivo (21, 86–89). Accordingly, blockade of IL-12
diminishes DC-induced IFN-g production by NK cells, suggesting
IL-12 is critical for optimal IFN-g release by activated human NK
cells (90). Additionally, IL-12 can work in concert with IL-15 and IL-
18 to generate ‘memory-like’NK cells, partly facilitated by epigenetic
reprogramming of the CNS1 enhancer region of the Ifng locus in NK
Frontiers in Immunology | www.frontiersin.org 3
cells, which enables them to produce elevated levels of IFN-g
compared to conventional NK cells upon activation as shown by
transferring IL-12/IL-15/IL-18-pretreated human NK cells in NSG
mice (91).

Interleukin-23
IL-12p40 also interacts with p19 subunits forming the
heterodimeric cytokine IL-23. Upon stimulation with IL-23,
CD56bright NK cells release higher levels of IFN-g as compared
to CD56dim NK cells due to their higher expression levels of IL-
23R. IL-23 also increases IL-18Ra expression, thus priming NK
cells for IL-18-induced IFN-g production. IL-23 stimulates
human NK cell activation in vitro while inhibiting IL-15- and
IL-18-induced NK cell proliferation (54). However, IL-23
reduces both cytotoxicity and IFN-g production in vivo, indeed
anti-IL-23 therapy synergizes with IL-2 or anti-erbB2 treatment
TABLE 1 | Cytokines and chemokines involved in the NK-myeloid cell crosstalk and drugs directed to modulate these interactions.

A. Myeloid cell-derived cytokines and their effects on NK cells.

Cytokine Produced by Effects Therapy Ref.

TGF-b MDSCs, TAMs, tumor cells, mast cells ↓activating receptor, cytokine production, cytotoxicity,
proliferation

Fresolimumab, galunisertib,
M7824 (clinical trial)

(25–30)

IL-10 MDSCs, TAMs, NK cells, DCs, macrophages ↓/↑ cytotoxicity, cytokine production – (24, 31–33)
IL-32a DCs ↓perforin, granzyme B – (34)
TNF Macrophages ↑ cytokine production – (35)
IL-12 DCs, macrophages, monocytes, neutrophils ↑ cytotoxicity, cytokine production, proliferation, survival IL-12, IL-12 +

pembrolizumab (clinical trial)
(21, 36)

IL-15 DCs, macrophages, monocytes ↑ cytotoxicity, cytokine production, proliferation, survival,
activating receptors, KIR

ALT-803 (phase 1 and 2
clinical trial), IL-15 +
Ipilimumab and Nivolumab
(phase 1 clinical trial)

(37–39)

IL-18 M0 macrophages, TAMs, DCs, ↑ cytotoxicity, cytokine production, proliferation, survival IL-18 (phase 1 and 2 clinical
trial)

(40–44)

IL-21 DCs ↑ cytotoxicity, proliferation, activating receptors IL-21, IL-21 + Ipilimumab
and nivolumab (phase-I and
–II clinical trial)

(45)

IL-6 MDSC, TAM, tumor cell, macrophages,
monocytes, mast cells

↓/↑ cytotoxicity, ↓ cytokine production Tocilizumab (clinical trial) (46, 47)

IL-1a Monocytes, DCs, macrophages ↓maturation Anakinra, Canakinumab,
Isunakinra (phase 1 and 2
clinical trial)

(23)

IL-27 DCs, macrophages, MDSCs ↓/↑ cytotoxicity, cytokine production p28 peptide (48–53)
IL-23 MDSC and TAM, DC and macrophage ↓/↑ cytotoxicity, cytokine production – (54, 55)
IL-17 Neutrophils ↑cytotoxicity, ↓maturation – (56, 57)
IFN-a/b DC ↑ cytotoxicity, cytokine production, proliferation, survival,

NKG2D
IFN-a/b approved (58)

B. NK cell-derived cytokines and their effects on myeloid cells.

Cytokine Target population Effects Therapy Ref.

IFN-g DCs maturation, activation – (59–61)
TAMs polarization towards pro-inflammatory Mj – (62, 63)
TANs inhibition of pro-tumorigenic TANs – (64)

TNF-a DCs maturation, activation – (59–61)
TAMs polarization towards pro-inflammatory Mj – (62)

HMGB1 DCs activation – (43, 65)
GM-CSF DCs activation – (62)

TAMs polarization towards pro-inflammatory Mj – (62)
TANs activation, promotes NETs – (66–68)

VEGF-A Endothelial cells, tumor cells proliferation, migration – (69)
January 2021 | Volume 11 | A
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FIGURE 1 | Cytokines involved in the NK-myeloid cell cross talk in the tumor microenvironment. (A) A simplified schematic illustration showing the orchestra of
myeloid- and NK cell-derived cytokines involved in forming anti-tumor immune responses by NK cells in the tumor microenvironment (TME). Activated NK cells
produce IFN-g which indirectly promotes recruitment of other NK cells from peripheral blood to the tumor sites. Upon recognition of tumor antigens, myeloid cells,
especially DCs and macrophages produce inflammatory cytokines such as type-1 IFNs, IL-12, IL-15, IL-18, IL-21. These cytokines either alone or cooperatively
promote NK cell survival, proliferation, maturation and production of spectrum of pro-inflammatory cytokines, including IFN-g, TNF-a, GM-CSF, which further boost
anti-tumor immune-activating potential of myeloid cells while recruiting additional inflammatory myeloid cells [including M1 macrophages (MQ), mature dendritic cells
(DCs)] to sustain the anti-tumor immune response. Furthermore, myeloid-derived IL-23 and IL-27 cytokines can also promote NK cell activity by inducing IFN-g
production, but they can also negatively influence the NK-myeloid cell anti-tumor crosstalk by secretion of tumor-promoting cytokines such as IL-17 and IL-10,
respectively. This suggests a dual role of IL-23 and IL-27 in NK cell-mediated tumor immunity. In line with the dual roles of certain cytokines, myeloid cells can
become immune suppressive (myeloid-derived suppressor cells; MDSCs). This is frequently occurring during cancer progression. MDSCs secrete a plethora of
immune suppressive cytokines that negatively influence the anti-tumor potential of NK cells per se but also impair anti-tumor responses normally resulting from the
NK-myeloid cell crosstalk. For example, suppressive cytokines promote NK cell exhaustion and directly impair NK cell-mediated cytolytic activity, while limiting the
ability of myeloid cells to produce NK cell stimulatory cytokines such as IL-12, IL-15, and IL-18. Green arrows indicate positive interactions and red arrows indicate
negative interactions. (B) Therapeutic approaches that directly or indirectly modulate cytokine mediators that enhance NK cell-mediated anti-cancer responses in the
TME. Simplified illustrations showing validated therapeutic approaches that can either restore or reinforce a stimulatory cytokine environment to augment NK cell-
mediated tumor killing activity. On one hand, immunomodulatory drugs (IMiDs) such as lenalidomide can indirectly augment NK cell anti-tumor activity by reducing
the levels of pro-tumorigenic factors, such as IL-6 and VEGF, while stimulating other immune cells to secrete IL-2. Accordingly, targeted blockade of immune-
suppressive cytokines, such as IL-6, TGF-b can also positively impact NK-myeloid anti-tumor cross-talk in a similar manner. On the other hand, recombinant or
synthetic cytokines as well as cell-based therapies such as cytokine-secreting CAR-NK cells can directly influence NK cell-mediated cancer cell killing. Importantly,
cytokine-activated NK cells can further edit myeloid cells to enhance anti-tumor response via the production of inflammatory cytokines, such as IFN-g. Light green
arrows show the mode of therapeutic action.
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in mammary and melanoma tumor models in an NK cell-
dependent manner (55, 92).

Interleukin-27
The IL-27 heterodimer is composed of p28 and EBI3 and
promotes pro- and anti-inflammatory functions mainly
through STAT1 and STAT3 (93). Like IL-23, IL-27 shows
differential activity on human CD56bright and CD56dim subsets,
maybe related to the higher expression of IL-27Ra in the
CD56bright subset (48). While CD56dim NK cells are not
affected, CD56bright NK cells acquire a regulatory phenotype.
Yet, in vivo studies on a murine squamous cell carcinoma model
and in vitro analysis on human NK cells also demonstrated that
IL-27 primes NK cells to respond to IL-18, while inducing
perforin, granzyme B, NKp46, and NKG2D expression, as well
as promoting antibody-dependent cellular cytotoxicity (ADCC)
(49–52, 94, 95).

Critical Role of Gamma-Chain Cytokines
Released by Myeloid Cells in Promoting
Natural Killer Cell Survival, Proliferation,
and Functions
The gamma-chain family consists of cytokines such as IL-2, IL-4,
IL-7, IL-9, IL-15, and IL-21 that all bind the common gamma-
chain receptor. Below we will focus the discussion on IL-15 and
IL-21 that are commonly derived from myeloid cells.

Interleukin-15
IL-15/IL-5Ra induces NK cell survival and proliferation by
acting as a soluble form or presented at the DC membrane. As
mentioned above, it is also an essential driver of NK cell
development and activation (37–39, 96). IL-15 expression
correlates with NK cell infiltration in human tumor samples
(97), and data from a murine melanoma model indicate
CD11b+Ly6ChiLy6G- monocytic cells are the major source of
this cytokine (78). IL-15, together with IL-12, also indirectly
regulates NK cell functions by controlling metabolism via
mTORC1 activation, which stimulates nutrient uptake,
glycolysis, and OXPHOS, thereby providing the energy for NK
cell proliferation, proper functions and enhanced persistance (36,
98). Interestingly, chronic IL-15 stimulation of NK cells results in
exhaustion by reducing the mitochondrial respiratory
capacity (99).

Interleukin-21
In addition to IL-15, DCs also release IL-21, which following
STAT3 and STAT1 signaling in NK cells, promotes NK cell
cytotoxicity via increased granzyme B and perforin expression.
Moreover, STAT1 and PI3K pathways are essential for IL-21-
mediated reversal of NK cell exhaustion in mice and for
intratumoral human NK cells cultured in vitro (45). Interestingly,
IL-21 differentially regulates the expression of activating receptors
by inducing NKp30 levels while reducing NKG2D/DAP10
expression in human NK cell (100). However, IL-21 contributes
to tumor rejection in an NKG2D-dependent manner in multiple
mouse tumor models (101).
Frontiers in Immunology | www.frontiersin.org 5
Interleukin-17 Can Promote Natural Killer
Cell Cytotoxicity While Limiting Terminal
Differentiation of Natural Killer Cells
Neutrophils are the major producers of IL-17, which binds to a
dimeric receptor and mainly signals through the NF-kB and
ERK pathways (102). IL-17 has been shown to enhance NK cell
recruitment in human esophageal cancer through tumor-derived
chemokines and NK cell cytotoxicity through the increased
expression of activating receptors, perforin, granzyme B, TNF-
a, and IFN-g (103). However, IL-17 has also been reported to
limit IL-15-mediated terminal murine NK cell differentiation via
upregulation of suppressor of cytokine signaling (SOCS), which
inhibits STAT5 phosphorylation, and reduces NK cell killing in
the presence of IFN-g (56).

Context-Dependent Role of Interleukin-18
in Cancer
Upon interaction with its heterodimeric receptor and the
activation of the MyD88 signaling pathway, IL-18 primes NK
cells to produce IFN-g (104). In vitro data also show that IL-18
can favor the differentiation of human CD56dim CCR7+ CD25+

CD83+ helper NK cells, which control tumor dissemination and
CD8+ T cell activation through the crosstalk with DCs in the
lymph nodes (40, 41, 105). Similar to other activating cytokines,
such as IL-17 above, also IL-18 can display immunosuppressive
features by boosting TGF-b-mediated immunosuppression
(106), formation of MDSCs, and induction of PD1 expression
on NK cells in mouse models (42, 107, 108). Notably, the
upregulation of IL-18 binding protein (IL-18BP), which
sequesters IL-18 as a physiological negative feedback
mechanism, has been reported as an immune escape strategy
(42, 109).
NATURAL KILLER CELL DYSFUNCTION
IN THE TUMOR MICROENVIRONMENT
TRIGGERED BY MYELOID-DERIVED
CYTOKINES

Although the NK-myeloid crosstalk stimulates anti-tumor
immunity by NK cells in the early tumor development,
immunosuppressive cytokines promoting NK cell dysfunction
predominate in the aggravated TME of more advanced tumors.
Tumor-associated macrophages (TAMs) and MDSCs are usually
the main myeloid cell populations in such TME and represent
the major producers of NK cell suppressive TGF-b and IL-10
(Figure 1A and Table 1A) (110).

Transforming Growth Factor-b
As mentioned above, TGF-b is a key suppressor of NK cell
migration, cytotoxicity, and cytokine production via
transcriptional and post-transcriptional control of receptor and
effector molecule expression (111). As an example, TGF-b-
mediated downregulation of CX3CR1 can limit NK cell
migration towards the tumor site (25); similarly, the
January 2021 | Volume 11 | Article 621225
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downregulation of activating receptors including NKG2D and
NKp30 as well as the adaptor proteins DAP10 and DAP12
triggered by TGF-b diminishes human NK cell cytotoxicity in
vitro (26–28, 111). TGF-b-mediated NK cell conversion into
Eomes- ILC1 with increased expression levels of inhibitory
receptors may represent an additional mechanism to reduce
NK cell cytotoxicity in mouse tumor models (29), while a third
mechanism is the inhibition of signaling pathways downstream
of pro-inflammatory cytokines (30, 36, 111, 112). TGF-b-
induced miRNA targets STAT1, which is essential for perforin
expression (111), whereas blockade of IL-15-mediated mTOR
activity dampens NK cell metabolism. Beyond this, TGF-b also
reduces NK cell-mediated IFN-g and TNF-a production in both
human and mouse (29, 30, 36, 111, 112).

Interleukin-10
Like TGF-b, IL-10 directly inhibits IFN-g and TNF-a production
by NK cells in vitro. This effect is also indirectly mediated via
inhibition of IL-12, IL-15, and IL-18 production in myeloid cells
(24, 58). Yet, in the presence of IL-12 and IL-18, IL-10 has also
been shown to stimulate NK cell proliferation, cytotoxicity, and
IFN-g production in vitro via the STAT3 signaling pathway (24,
31, 113, 114). More studies are needed to determine this complex
relationship between NK cell suppressive and possibly NK cell
promoting properties of IL-10.

Interleukin-32a
Another myeloid-derived immunosuppressive cytokine that can
characterize the NK cell suppressive TME is IL-32a. IL-32a,
which is often found highly expressed in the TME (115), inhibits
IL-15-induced upregulation of perforin and granzyme B in vitro
(34). Interestingly, dysregulated levels of IL-32a impairs human
NK cell functions in chronic myelomonocytic leukemia and
myelodysplastic syndrome (116).

Interleukin-1b
IL-1b is released by monocytes, DCs, and macrophages and
stimulates the expansion of CD11b+Gr-1+Ly6C- MDSCs, which
are potent inhibitors of murine NK cells in vivo (117). This
cytokine has also been reported to maintain human NK cells in
an immature state in the presence of IL-15 in secondary
lymphoid tissues (23). Similarily to several cytokines above, IL-
1b can also have NK cell promoting effects. One example is by
indirectly promoting NK cell IFN-g release by inducing IL-21
production in Th9 cells in mice (118).
NATURAL KILLER CELL-DERIVED
CYTOKINES REGULATING MYELOID
CELLS IN THE TUMOR
MICROENVIRONMENT

Upon cytokine stimulation and target cell encounter, NK cells
themselves produce a range of cytokines such as IFN-g, TNF-a,
granulocyte-macrophage colony-stimulating factor (GM-CSF),
and in some cases IL-10, that in turn modulate myeloid cells
Frontiers in Immunology | www.frontiersin.org 6
(119–121) (Figure 1A and Table 1B). In this section, we will
summarize how cytokines released by NK cells affect the NK-
myeloid cell crosstalk.

Dendritic Cells
DCs are central in triggering immune responses by T and NK
cells. However, NK cells are also important for the DC function.
In addition to cell-to-cell contact, NK cell-derived IFN-g, TNF-a,
and GM-CSF play a key role in the maturation and activation of
human antigen-presenting DCs in the TME and lymphoid
organs (59–61, 122). Further, activated human DCs maintain
the IFN-g production and induce high mobility group box 1
(HMGB1) production in NK cells via secretion of IL-12 and IL-
18, resulting in further DC activation and maturation (43, 65).
Hence, NK cells can be central in promoting DC maturation and
activation, thereby feeding the positive loop of NK-myeloid
crosstalk involving DCs in the TME.

Tumor-Associated Macrophages
TAMs are often immunosuppressive and known drivers of
tumor progression (123). However, macrophages in the TME
have a high degree of plasticity and can even display a pro-
inflammatory phenotype (M1) and release IFN-g and TNF-a
(124). In vitro studies have shown that IFN-g is the main
cytokine that drives classical activation of macrophages and
polarizes them towards an M1-like phenotype (62). Indeed, as
highlighted in a murine sarcoma model, NK cell-derived IFN-g
promotes M1 polarization of macrophages (63). Additionally,
TNF-a, and GM-CSF also support an inflammatory phenotype
in macrophages (62). Hence, NK cells can also have a critical role
in maintaining a pro-inflammatory phenotype of TAMs.

Tumor-Associated Neutrophils
Similar to TAMs, tumor-associated neutrophils (TANs) can be
both tumor-promoting or pro-inflammatory and thereby
counteract tumor growth. Recently, the first studies have
investigated the interaction of NK cells with TANs in mouse
models. NK cell-derived IFN-g inhibits the tumor-promoting
function of TANs in murine sarcoma and lung cancer models
(64). NK cell-derived GM-CSF appears to promote Neutrophils
Extracellular Trap formation by neutrophils, which can support
tumor metastasis (66, 67).

Myeloid-Derived Suppressor Cells
MDSCs include a heterogenous group of myeloid cells that have
a markedly strong immunosuppressive ability. While NK cell-
derived GM-CSF results in DC activation and macrophage
polarization towards an anti-tumorigenic phenotype, GM-CSF
expands MDSCs in human and murine tumors (62, 125, 126).
The exact role of NK cell-derived GM-CSF in promoting MDSC
expansion in the TME remains unclear but should likely not be
neglected. Importantly, it is clear that NK cells can promote
MDSCs in the TME also by other mechanisms. A CD73+ IL-10-
secreting subset of NK cells was recently identified in human
sarcomas (127). While IL-10 promotes regulatory T cells (Tregs),
it has also been shown to maintain the immune-suppressive
functions of MDSCs in ovarian cancer (128).
January 2021 | Volume 11 | Article 621225
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THERAPEUTIC APPROACHES TODIRECTLY
STIMULATENATURAL KILLERCELLSOR TO
REVERT THE TUMORMICROENVIRONMENT
TO FAVORNATURAL KILLERCELL
ANTI-TUMORRESPONSES

As highlighted in the previous sections, controlling the cytokine
milieu in the TME is likely key to unleash the full potential of NK
cell-based immunotherapies for several malignancies. Below, we
will discuss ongoing and future approaches to enhance NK cell
cytotoxicity in the TME (Figure 1B).

Administration of Cytokines
Administration of cytokines to boost NK cell anti-tumor
cytotoxicity has been widely explored in the recent years. IL-2, IL-
12, IL-15, and IL-21 represent the most promising cytokines under
investigation. While IL-2 acts on several immune cell populations,
the effects of IL-15 is mainly limited to NK cells and CD8+ T cells.
Promising results have been obtained in phase I clinical trials for
melanoma and hematologic malignancies using ALT-803 (an
IL-15 mutein/IL-15Ra complex fused with the IgG1 Fc) (129,
130). However, side-effects observed following high-dose
administration of both IL-2 and IL-15 represents a major
challenge along with mobilization of Tregs (131, 132). An
alternative strategy to reduce the risk of side-effects while
stimulating NK cells more specifically is the use of IL-2 mutants,
such as IL-2 F42K and IL-2 H9 that compared to wildtype IL-2
preferentially bind IL-2Ra and thereby increases NK cell activation
without inducingTregexpansion (133–135). Likewise, although the
use of IL-18 therapy did not show toxicity and was ineffective in
several clinical trials, a novel IL-18mutant has been recently shown
to induce NK cell anti-tumor activity (136).

To avoid the toxicities of high-dose cytokines, investigators
have also addressed the use of lower doses following adoptive NK
cell transfer or combined with checkpoint blockade or fused to
anti-tumor antibodies. Intermediate doses of IL-2 have been
explored to support adoptively infused NK cells (5). In this
context, IL-2 is intended to promote persistence and expansion
of the infused donor NK cells, however, data also show IL-2
mobilizes Tregs which likely counteract the effect of the
transferred NK cells. As clinical protocols on adoptive NK cell
transfer where post-infusion IL-2 has been omitted report similar
outcomes as those with IL-2 (137), it remains unclear as to whether
post-NKcell infusion IL-2 is of benefit or not.Administrationof IL-
15 has also been used to support adoptively infused NK cells.
However, although in initial trials report this cytokine may trigger
better responses, intermediate doses of IL-15 were associated
with cytokine-release syndrome (CRS) when administrated
subcutaneously (138). Additional investigations are needed to
identify which cytokines and the window in which they promote
the effect of adoptively infused NK cells.

IL-15, IL-12, and IL-21 are under clinical investigation
combined with anti-CTLA4, anti-TIM3, or anti-PD-1 (139, 140).
Alternative approaches that are also currently exploredare basedon
the generation of anti-tumor antibody-cytokine fusion molecules.
Trispecific killer engagers (TriKEs) fused with IL-15 have
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demonstrated their ability to boost NK cell functions and
persistence (141, 142), whereas IL-21 fused to anti-CD20
increases mouse survival in a lymphoma model (143). Future
studies have to address the clinical efficacy of these approaches.

Modulation and Prevention of Cytokine
Signaling
In addition to themore direct cytokine-based treatment approaches
discussed above, there are also indirect strategies explored.
Targeting pathways downstream of cytokine receptors may
represent an alternative or complementary approach. Inhibition
of SOCS proteins is promising since blockade of the STAT5
inhibitor CIS increases NK cell-mediated anti-tumor activity
(144). In preclinical models, agonists of the stimulator of IFN
genes (STING) pathway induce tumor regression by stimulating
IL-15 production by infiltrating myeloid cells (145). Data also
support the potential of GSK3 inhibitors in promoting
maturation and cytotoxicity of NK cells following expansion ex
vivowith IL-15 (146)GSK3 inhibition increasedNKcell production
ofTNFand IFN-g aswell as bolstered theNKcytotoxicityper se and
via ADCC, which translated into better tumor control of human
ovarian cancer in a mouse model. An alterantive strategy is to alter
the cytokine environment in the TME by neutralizing
immunosuppressive cytokines. Ongoing trials with anti-TGF-b
(Fresolimumab) and inhibitors of TGF-b signaling (140) will
show if such approach has potential for the future. Depletion
and/or prevention of the infiltration of suppressive cytokine-
producing myeloid cells in the TME per se represents a tempting
and yet incompletely explored alternative that indirectly would
bolster the anti-tumor properties of NK cells. This approach needs
further attention in future studies.
CONCLUDING REMARKS

The network of cells and signals in the TME is complex and not yet
fully understood. However, ample evidence show that this
environment most often is NK cell suppressive, especially in more
advanced disease. Yet, the NK-myeloid cell crosstalk is central in
shaping NK cell anti-tumor responses and that a better
understanding of this crosstalk is required to improve outcomes
of NK cell-based cancer immunotherapies. While strategies
directed towards boosting NK cell cytotoxicity per se using
cytokines or drugs that modulate cytokine signaling, other
complementory approaches directed towards reverting the TME
to favor anti-tumor immunity is likely required to promote long-
term responses.

As pointed out in thismini review, challenges hindering prompt
progress in the field include the multitude of different cell types in
the TME along with the context-dependent functions of several
cytokines derived fromboth themyeloid cells and the NK cells.We
predict that recent developments related to genetic engineering of
NK cells along with the arsenal of new cytokine mutants as well as
targeted and immunomodulatory drugs, alone or combination,
can facilitate progress in the field. We foresee the use of genetically
engineered NK cells to help improve their efficacy per se but also to
resist and persist in the TME and thereby have the chance to
January 2021 | Volume 11 | Article 621225
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revert it to a more pro-inflammatory milieu optimal for initating
potent durable anti-tumor immune reponses. CAR-NK cells
equipped with cytokine signaling elements or dominant negative
cytokine receptors are examples that hold promise.We are positive
that this along with further insights in the basic biology of
cytokines and cytokine signaling will help improve NK cell-based
cancer immunotherapy.
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118. Végran F, Berger H, Boidot R, Mignot G, Bruchard M, Dosset M, et al. The
transcription factor IRF1 dictates the IL-21-dependent anticancer functions
of TH9 cells. Nat Immunol (2014) 15:758–66. doi: 10.1038/ni.2925

119. Cooper MA, Fehniger TA, Turner SC, Chen KS, Ghaheri BA, Ghayur T, et al.
Humannatural killer cells: a unique innate immunoregulatory role for theCD56
(bright) subset. Blood (2001) 97:3146–51. doi: 10.1182/blood.v97.10.3146

120. Fauriat C, Long EO, Ljunggren H-G, Bryceson YT. Regulation of human
NK-cell cytokine and chemokine production by target cell recognition. Blood
(2010) 115:2167–76. doi: 10.1182/blood-2009-08-238469

121. Delahaye NF, Rusakiewicz S, Martins I, Ménard C, Roux S, Lyonnet L, et al.
Alternatively spliced NKp30 isoforms affect the prognosis of gastrointestinal
stromal tumors. Nat Med (2011) 17:700–7. doi: 10.1038/nm.2366

122. Morrissey PJ, Bressler L, Park LS, Alpert A, Gillis S. Granulocyte-
macrophage colony-stimulating factor augments the primary antibody
response by enhancing the function of antigen-presenting cells. J Immunol
(1987) 139:1113–9.

123. Jayasingam SD, Citartan M, Thang TH, Mat Zin AA, Ang KC, Ch’ng ES.
Evaluating thePolarization ofTumor-AssociatedMacrophages IntoM1andM2
Phenotypes in Human Cancer Tissue: Technicalities and Challenges in Routine
Clinical Practice. Front Oncol (2019) 9:1512. doi: 10.3389/fonc.2019.01512

124. Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P. Tumour-
associated macrophages as treatment targets in oncology. Nat Rev Clin
Oncol (2017) 14:399–416. doi: 10.1038/nrclinonc.2016.217

125. Becher B, Tugues S, Greter M. GM-CSF: From Growth Factor to Central
Mediator of Tissue Inflammation. Immunity (2016) 45:963–73. doi: 10.1016/
j.immuni.2016.10.026
Frontiers in Immunology | www.frontiersin.org 11
126. Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of
the immune system. Nat Rev Immunol (2009) 9:162–74. doi: 10.1038/
nri2506

127. Neo SY, Yang Y, Record J, Ma R, Chen X, Chen Z, et al. CD73 immune
checkpoint defines regulatory NK cells within the tumor microenvironment.
J Clin Invest (2020) 130:1185–98. doi: 10.1172/JCI128895

128. Hart KM, Byrne KT, Molloy MJ, Usherwood EM, Berwin B. IL-10
immunomodulation of myeloid cells regulates a murine model of ovarian
cancer. Front Immunol (2011) 2:29. doi: 10.3389/fimmu.2011.00029

129. Margolin K, Morishima C, Velcheti V, Miller JS, Lee SM, Silk AW, et al.
Phase I Trial of ALT-803, A Novel Recombinant IL15 Complex, in Patients
with Advanced Solid Tumors. Clin Cancer Res (2018) 24:5552–61.
doi: 10.1158/1078-0432.CCR-18-0945

130. Romee R, Cooley S, Berrien-Elliott MM, Westervelt P, Verneris MR, Wagner
JE, et al. First-in-human phase 1 clinical study of the IL-15 superagonist
complex ALT-803 to treat relapse after transplantation. Blood (2018)
131:2515–27. doi: 10.1182/blood-2017-12-823757

131. Conlon KC, Lugli E, Welles HC, Rosenberg SA, Fojo AT, Morris JC, et al.
Redistribution, Hyperproliferation, Activation of Natural Killer Cells and
CD8 T Cells, and Cytokine Production During First-in-Human Clinical Trial
of Recombinant Human Interleukin-15 in Patients With Cancer. J Clin
Oncol (2015) 33:74–82. doi: 10.1200/JCO.2014.57.3329

132. Abbas AK, Trotta E, Simeonov DR, Marson A, Bluestone JA. Revisiting IL-2:
Biology and therapeutic prospects. Sci Immunol (2018) 3:eaat1482.
doi: 10.1126/sciimmunol.aat1482

133. Sim GC, Liu C, Wang E, Liu H, Creasy C, Dai Z, et al. IL2 Variant
Circumvents ICOS+ Regulatory T-cell Expansion and Promotes NK Cell
Activation. Cancer Immunol Res (2016) 4:983–94. doi: 10.1158/2326-
6066.CIR-15-0195

134. Ardolino M, Azimi CS, Iannello A, Trevino TN, Horan L, Zhang L, et al.
Cytokine therapy reverses NK cell anergy in MHC-deficient tumors. J Clin
Invest (2014) 124:4781–94. doi: 10.1172/JCI74337

135. Mitra S, Leonard WJ. Biology of IL-2 and its therapeutic modulation:
Mechanisms and strategies. J Leukoc Biol (2018) 103:643–55. doi: 10.1002/
JLB.2RI0717-278R

136. Zhou T, Damsky W, Weizman O-E, McGeary MK, Hartmann KP, Rosen
CE, et al. IL-18BP is a secreted immune checkpoint and barrier to IL-18
immunotherapy. Nature (2020) 583(7817):609–14. doi: 10.1038/s41586-020-
2422-6

137. Björklund AT, Carlsten M, Sohlberg E, Liu LL, Clancy T, Karimi M, et al.
Complete Remission with Reduction of High-Risk Clones following
Haploidentical NK-Cell Therapy against MDS and AML. Clin Cancer Res
(2018) 24:1834–44. doi: 10.1158/1078-0432.CCR-17-3196

138. Cooley S, He F, Bachanova V, Vercellotti GM, DeFor TE, Curtsinger JM,
et al. First-in-human trial of rhIL-15 and haploidentical natural killer cell
therapy for advanced acute myeloid leukemia. Blood Adv (2019) 3:1970–80.
doi: 10.1182/bloodadvances.2018028332

139. Waldmann TA. Cytokines in Cancer Immunotherapy. Cold Spring Harb
Perspect Biol (2018) 10:a028472. doi: 10.1101/cshperspect.a028472

140. Berraondo P, Sanmamed MF, Ochoa MC, Etxeberria I, Aznar MA, Pérez-
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